省编数学教案最新5篇

时间:
tddiction
分享
下载本文

教案的适切性也涉及到教学评估和反馈的过程,以确保学生真正受益,教案的适切性可以通过教师与学生之间的积极互动来实现,以了解他们的反馈和需求,下面是总结了小编为您分享的省编数学教案最新5篇,感谢您的参阅。

省编数学教案最新5篇

省编数学教案篇1

教学内容:

观察物体

教学目标:

1、让学生经历观察的过程,认识到从不同的位置观察物体,所看到的形状是不同的。能辨认从正面、左面、上面观察到的简单物体的形状。

2、培养学生从不同角度观察,分析事物的能力。

3、培养学生构建简单的空间想象力。

重点:帮助学生构建初步的空间想象力。

难点:帮助学生构建初步的空间想象力。

教学过程:

一、谜语导入

请同学们猜谜语:“左一片、右一片,摸得着,看不见,是什么呢?”(耳朵)为什么能看见别人的耳朵,却看不见自己的耳朵呢?因为我们观察的角度不一样,那么今天我们就一起来进一步研究观察物体(板书)

二、合作探究

(一)整体观察

1、教师将一个对面涂有相同颜色的长方体举起静止不动,叫学生观察并提问:

你观察到的正方体是什么样的?

在你的位置上观察,你看到了哪几个面?

2、学生汇报交流。

学生自由走动,观察。汇报交流。

3、解释应用

教师出示两个正方体的立体图,一个有虚线,另一个没有。

提问:谁能用刚学到的知识解释一下正方体为什么这样画?

学生解释说明。

(二)分别从三个面进行观察(出示例1)

1、教师提问:我们分别从几个不同的方向去观察这个图形,看看它的正面、左面以及上面分别是什么形状的图形,把它们分别划出来。

学生离开座位自由观察。

2、小组之间相互交流,然后全班交流,学生以组为单位在投影以上展示交流。

总结学生的发言:从不同的方向观察,所看到的形状是不一样的。

三、拓展应用

1、做教科书例2

2、智力游戏:两个同学为一组做游戏,一个同学画,另一个同学猜,负责猜的同学要想办法通过你提问的问题确定这个物体是什么,猜完后,在把物体拿出来验证一下,看是否猜对了。

学生玩游戏,教师指导。

四、总结

本节课你学会了什么?

五、作业布置

兴趣探索,根据以下几幅图找出1的对面是几,2的对面是几,3的对面是几。

1、不同角度观察一个物体,看到的面都是两个或三个相邻的面,不可能一次看到长方体或正方体相对的面。

2、从一个面看到物体的形状,可以有多种不同的摆放方式。

3、知道从两个面看到的物体的形状,可以确定小立方体的个数范围。

省编数学教案篇2

本节课主要教学混合运算在实际生活中的应用,教材已经提供好了大体的框架和思路线索,教学时可以按照教科书提出的问题组织学生逐一解决,大体分为三大步骤,先引导学生从情境中发现问题,收集信息,能够从具体的情境中抽象出数学信息和数学问题;再尝试探索、寻找综合运用所学知识解决问题的方法,在学习与他人合作、交流的过程中,形成解决问题的基本策略;最后通过反思解决方法的正确与否,让学生在交流、评价中进一步明确解决问题的思路和策略。

学情分析

这节课是学习了两步混合运算的计算顺序后教学的,是引导学生利用所学知识解决实际问题的一节应用课,前面学生已经积累了一定的解决问题的思路和方法,教学时通过多种方式进行,进一步培养学生分析问题、解决问题的能力,加强学生对混合运算知识的掌握。

教学目标

1.让学生在解决实际问题的过程中,学会用色条图(线段图的邹形)分析数量关系,感受其使问题简明、直观、便于分析的作用,渗透数形结合思想,丰富解决问题的策略。

2.使学生解决问题的完整过程,学会用找出中间问题的方法解决需要两步解决的问题,丰富学生解决问题的策略。

3.在分步列式解决问题的基础上,逐步学会列综合算式解决问题,会合理运用小括号改变运算顺序。

4.在解决问题的过程中,培养学生认真观察、独立思考、合作交流等良好的学习习惯和热爱数学的情感。

重点难点

1.利用线段图分析数量关系,掌握解决需要两步解决的问题的步骤和方法。

2.会找出隐藏的中间问题,并合理利用小括号列综合算式解决问题。

方法指导

引导法,提示法,学会观察,讨论法,探究法

预设流程

具 体 内 容

激趣导入

(约3分钟)

一顿营养的早餐是一天生活的开始。对将近10个小时不停消耗能量却没有补充的身体来说,早餐格外重要。早餐唤醒了身体,开启了身体高效的新陈代谢;早餐能把能量最先供给到大脑,以便让我们有清晰的思路和判断力进行一天的工作、学习。不吃早餐,不仅会营养失衡、引起胃肠疾病,还会出现身体不适、容易衰老、精神无法集中等各种问题,所以,要想学习好,早餐要吃好哦!

自主学习

(约7分钟)

剩下的还要烤几次?

1. 仔细观察,你知道了什么?

2. 谁能完整地说说这道题的意思?

3.要求“剩下的还要烤几次”你们会解决吗?

合作交流

(约10分钟)

1.深入理解,体会方法

(1)一共要考(90 )个,已经烤了(36)个,剩下(54)个没有烤,每次烤9个,剩下的要烤(6)次。

(2)在图示中,把要考的90个看做一个整体,分成( 已烤的 )和(剩下的 )两部分,要求剩下的还要烤几次,必须先求出(剩下的量 ),再用剩下的数量除以每次烤的数量9个,就是要烤的( 次数 )。

(3)尝试解决,小组交流。

(4)全班交流,教师板书。

(90-36)÷9

= 54÷9

= 6(次)

分步列式: 综合算式:

90-36=54(个)

54÷9=6(次)

追问:说说你是怎么想的。

(5)说出自己的想法。

(6)教师精讲,再次理清题意。

2.检查反思,归纳总结

问题:

(1)解答正确吗?说说你的想法。

(2)今天研究的问题为什么必须两步解答?

精讲点拨

(约5分钟)

小结:解决一个问题需要两个和它有关的信息,如果其中的一个

信息直接给了,另一个信息没有直接告诉我们,我们要先

求出它来,再解决最后的问题。

测评总结(约15分钟)

1.达标测试。

(1)

问题:

① 你知道了什么?

②想求“平均每个笼子放几只” 你会解答吗?请写一写。

(25+15)÷8

=40÷8

=5(只)

③说一说你是怎么做的,也可以用画图的方法来帮助说明。

④为什么要先求“一共有多少只兔子”?

⑤ 解答正确吗?你是怎么知道的?

(2)剩下的要用5天挖完,平均每天挖多少米?问题:

①你知道了什么?

②要求“平均每天挖多少米” 你会解答吗?

画一画,算一算,把你的想法表示出来。

(60-15)÷5

= 45÷5

= 9(米)

③解答正确吗?你是怎么知道的?

④为什么这道题要用两步来解决?

⑤剩下的要用5天挖完,平均每天挖多少米?

(3) 同学们在做操,如果9个人一排,可以站几排?

问题:

①你知道了什么?

②你会解答吗?把你的想法写出来。

6×3÷9

=18÷9

=2(排)

③为什么这道题要用两步来解决?

④这道题的综合算式不需要加小括号吗?

⑤解答正确吗?

2.课堂总结

解决一个问题需要两个和它有关的信息,如果其中的一个信息直接给了,另一个信息没有直接告诉我们,我们要先求出它来,再解决最后的问题。

3.布置作业

作业:第55页练习十二,第2题、第3题。第56页练习十二,第5题。

板书设计

解决问题

例4:

(90-36)÷9

= 54÷9

= 6(次)

分步列式: 综合算式:

90-36=54(个)

54÷9=6(次)

追问:说说你是怎么想的。

省编数学教案篇3

教学内容

教科书p48例2及“做一做”,完成p50~51“练习十一”第5、6题。

教学目标

1.借助解决问题的过程让学生感受“先乘除后加减”的道理。

2.使学生理解和掌握没有括号的两级混合运算的运算顺序,并能正确运用运算顺序进行计算。

3.培养学生养成先看运算顺序,再进行计算的良好习惯,提高学生的运算能力。

教学重点

正确理解和运用没有括号的两级混合运算的运算顺序。

教学难点

理解规定混合运算的运算顺序的必要性。

教学准备

课件。

教学过程

课前三分钟德育教育:爱是什么?(爱可以是一个拥抱;可以是一次感动;爱也可以是一件礼物;一声问候;对于我们小孩子来说,最真真实实的爱,最看得见,摸得着的爱,爱还可以事一个动作,一句话语。

一、复习导入

课件出示练习题

指名学生回答。

师:同级运算的运算顺序是什么呢?

?学情预设】在没有括号的算式里,同级运算按从左到右的顺序计算。

师:刚才这几道题,我们都采用了从左往右的顺序计算,这节课我们学习新的内容。(板书课题:没有括号的两级混合运算)

二、探究新知,掌握算法

1.创设情境,发现问题。

课件出示教科书p48例2主题图。

?学情预设】跷跷板乐园场地内有3个跷跷板,每个跷跷板上有4个人,场地内还有7个人。

师:同学们观察得真仔细!你们能发现其中的数学问题吗?谁来说一说?

?学情预设】预设1:跷跷板乐园一共有多少人?

预设2:坐跷跷板的比没坐跷跷板的多多少人?

预设3:没坐跷跷板的比坐跷跷板的少多少人?

2.解决问题。

师:我们一起来解决下面这个问题。(出示课件)

师:想一想,要求跷跷板乐园一共有多少人,要先求什么?再求什么?

?学情预设】先求坐跷跷板的有多少人,再把坐跷跷板的人数和没坐跷跷板的人数加起来。

师:请列式解答。

教师巡视,注意案例收集。

?学情预设】

预设1:3×4=12(人)12+7=19(人)

预设2:3×4+7=19(人)

预设3:7+3×4=19(人)

预设4:7+(3×4)=19(人)

教师指名学生回答,全班交流,在交流的过程中,要求学生说清楚先算什么,再算什么。

师:你能尝试用递等式来计算上面的综合算式吗?

指名学生板演。

在集体评析计算过程中,教师用下划线和箭头进一步标注运算顺序。

?学情预设】

脱离情境后会有学生仅仅看算式,出现不同的答案的情况。作为错误案例,教师正好可以引用,追问:“这个解答先算的是什么?”“符合我们解题的要求吗?”……从而引出规定运算顺序的必要性。

师:不同的综合算式,有什么联系?

?学情预设】都要先算“坐跷跷板的一共有多少人”,再算“一共有多少人”。

师:也就是不管乘法算式写在哪里,和加法在一起的时候,都要先算乘法。如果没有规定这样的顺序会出现什么样的结果呢?

?学情预设】一道题就有两种结果。

师:是的,这样就不能保证计算结果的唯一性了,这不符合我们数学运算的要求。

师:观察7+4×3和7+(4×3),它们有什么相同点和不同点?

?学情预设】学生会发现运算顺序相同,结果相同,但后一个算式给乘法加了小括号。

师:这样还有必要加小括号吗?

?学情预设】没有,不加小括号更简洁。

师:所以,我们要注意数学表达的准确性和简洁性。

?设计意图】例2贴近学生生活实际,不仅数量关系简单,而且有情境图作为直观支撑,学生还有过学习乘加的经验,给教师指导学生观察和处理信息提供了很大的方便。学生在该阶段会用综合算式,但习惯用脱式的会比较少。从情境出发,首先让学生明确在有加法、乘法的综合算式中,不管乘法放在哪个位置都应该先算乘法。

3.结合已有经验,归纳两级运算的运算顺序。

师:还记得上节课所学的关于同级运算的运算顺序吗?

?学情预设】同级运算按从左往右的顺序计算。

师:现在一个算式中有乘法,又有加法,不是同级的综合运算,应该怎么计算呢?

?学情预设】应该先算乘法,再算加法。

师:也就是先算二级运算,再算一级运算。(引导学生说出)

师:这节课学习的混合运算的运算顺序是什么?

结合学生的回答,教师板书:在没有括号的算式里,如果有乘、除法,又有加、减法,要先算乘、除法,后算加、减法。

三、熟悉脱式计算的格式

课件出示教科书p48“做一做”。

学生独立完成,集体评析。

教师组织学生从运算顺序是否正确、格式是否规范、计算是否正确等方面评析学生的计算情况。

师:谁能说一说,刚刚的脱式计算在格式上需要注意什么,跟以前有什么不一样?

?学情预设】横式的等号写在式子的右边,而脱式计算的等号写在算式的下面,上下对齐,还要写在式子的左边;尽量做到数与数对齐,计算符号与计算符号对齐。

?设计意图】含有两级运算的运算顺序表述较长,且二年级学生在理解和掌握时需要一个过程,所以在这里分两步(乘和加、减混合,除和加、减混合)分别让学生逐步理解和掌握,加深学生的印象,同时也培养了学生类比、迁移的能力。

四、巩固练习

1.完成教科书p50“练习十一”第5题。

(1)学生独立完成。

(2)让学生在练习本上先算出综合算式的答案,再标记在算式的下面,最后进行比较。

(3)指名学生汇报各题是怎样算的,集体核对。2.完成教科书p51“练习十一”第6题。

师:比较上面的树形图与综合算式,你有什么发现?

引导学生先从上往下观察运算顺序,再从左往右观察书写顺序。

?设计意图】每个练习题的侧重点有所不同,而且是一个循序渐进、由浅入深的过程,这样能化解难点,同时让学生在掌握运算顺序的基础上,培养灵活运用的能力。

五、课堂小结

师:今天这节课我们学习的运算顺序和昨天学习的有什么不同?你还有什么不懂之处?你知道在什么情况下该用今天学的运算顺序?

板书设计

在没有括号的算式里,如果有乘、除法,又有加、减法,要先算乘、除法,后算加、减法。

省编数学教案篇4

教学内容:

教材第2页例1、例2、例3,做一做及练习一第1-3题。

教学目标:

1.在熟悉的生活情境中初步认识负数,理解负数的意义,能正确的读写正数和负数,知道0既不是正数也不是负数。会用负数灵活地表示一些实际问题,能比较熟练地在数轴上找到正数、0和负数所对应的点。

2.借助熟悉的生活情境经历负数产生的过程,体会负数的意义。具有数形结合的意识,深刻体会数轴形成的过程。

3.激发学生对数的认识的兴趣,感受负数与生活的密切联系。

教学重点:

理解负数的意义,会用正数、负数表示生活中的相反的量。

教学难点:

理解相反意义的量和对0的认识。

教学准备:

课件

教学过程:

一、认识负数

(1)情境激疑

同学们,刚才一上课大家就做了一组相反的动作,想想看,是什么?

今天这节课咱们就从“相反”这个话题开始聊起:在咱们的生活中有很多的相反现象,比如太阳每天东升西落、车站上人们上车下车……

你能再举几个这样的例子吗?

顺着这位同学的思路继续往下聊,走进数学你又有什么发现?

1. 今年开学,四年级转入15名同学,五年级转出15名同学。

2.在剪刀、锤子、布活动中,男同学赢了3次,女同学输了1次。

3.李叔叔做生意,三月份亏了3000元,四月份赚了8000元。

怎样用数学的形式来表示这些意义相反的量呢?出示。

要求:简洁,是让别人也能一目了然。

汇报,可能有以下情况。

①直接表示 ( 简洁但不明了)

②用文字表示 (明了又不够简洁)

③用符号表示(简明、清楚,一目了然)

小结:现在人们就是用这种形式来区分意义相反的量的。

(2)认识正、负数。

你知道像这样的数,叫什么数吗?

举个例子来说?+3你会读吗?

像(—2)这样的数呢?

怎么读呢

师介绍:加号在这里叫做正号,减号叫

做负号。正数和负数表示意义相反的量。

练习:读出下面的数

-100、+6.8、-1.8、36

为了简便,+36可以写为36。也就是说通常情况下正号都可以省略。师板书。

得出:正数有无数个,负数也有无数个,用……来表示。

二、丰富新知,介绍负数历史。

同学们,我们今天从“相反”这个词聊起认识了负数这个新朋友。其实对于负数的认识,在咱们中国有着悠久的历史。古代的人,遇到这样问题的时候,也想出了不同的方法。你想知道吗?(课件演示或学习第4页你知道吗?)

听完介绍后你有什么感受?

接下来再让我们回到生活中,找一找在咱们身边又有哪些负数?(板书课题:负数)

三、生活中的应用

1.在温度计上认识负数

我的一位朋友喜爱出门旅游,这是他所定的几个备选城市,我帮他留意了一下气温情况,一起来看一下

(1)(多媒体播放城市天气预报:哈尔滨-15--3℃,北京-5-5℃;上海0-8℃;海口12-20℃)

得出:0℃的作用十分重要,它正好是零上温度和零下温度的分界点,换句话说也就是正数和负数的分界点,所以它既不是正数也不是负数。

(板书0,并用集合圈将正数、负数、0进行分类)

那你知道0度是怎么来的吗?

介绍:瑞典天文学家摄尔秋思,他把自然状态下的水刚开始结冰时的温度,规定为0℃。

(2)温度计。

生活中用什么工具来测量温度吗?(课件示:生活中常用的温度计)

介绍:摄氏度、华氏度,每格代表1℃。

2.电梯里的负数

叔叔上五楼开会,阿姨到地下二楼取车,应按哪两个键?(5、-2)

5和-2是以什么为分界点的呢?

3.海拔高度中的负数

世界峰珠穆朗玛峰比海平面高出8844.43米。如果把这个高度表示为+8844.43米,那么比海平面低155米的新疆吐鲁番盆地的高度应表示为( )米,海平面的高度为( )米。

练习

如果大雁向南飞30米记作+30,那么向北飞50米记作( )。

如果体重增加4千克用+4表示,那么-1.5表示( )。

4.数轴上的负数

出示例3

你能在一条直线上表示出他们运动后的情况吗?(强调以谁为分界点,以什么方向为正。两种说法)

指出:在一条直线上,确定了0(原点)、正方向和单位长度,就形成了一条数轴,刚才大家所说的就是数轴的形成过程。

现在你能在数轴上找到他们运动后的位置吗?

完成练习

(2)如果小华的位置是+11米说明她是向( )行( )米。(指出+11的位置,体会数轴是无限长的。)

(3)如果小刚先向东行5米,又向西行8米,这时小刚的位置为( )米。

(分层拓展)

5.运动场上的负数

刘翔在第十届世界田径锦标赛半决赛中110米栏的成绩是13秒42,当时赛场的风速是每秒-0.4米,你知道风速每秒-0.4米的意思吗?

四、小结

今天我们一起认识了负数,了解负数在生活中的一些作用,其实在我们的生活中负数还有更加广泛的用途等待着大家继续去了解。

省编数学教案篇5

教学目标

1、 使学生知道素数与合数的意义,会判断一个数是素数还是合数,会将自然数按因数的个数进行分类。

2、 使学生在探究活动中,进一步培养观察、比较、分析和归纳能力,感受数学文化的魅力,培养勇于探索的精神。

教学过程

一、 创设情境,激趣引入

谈话:同学们,今天先向大家介绍一个世界数学史上著名的猜想。

课件播放:哥德巴赫是200多年前德国的数学家,他提出了一个伟大的猜想任何一个大于4的偶数都可以表示成两个奇素数的和。另一个大数学家欧拉又补充指出:任何大于2的偶数都是两个素数之和。这一猜想被称为哥德巴赫猜想。虽然人们知道这一猜想是正确的,但一直没能从理论上加以证明。数学家们把这一猜想称为数学皇冠上的明珠。我国数学家王元、潘承洞、陈景润先后在哥德巴赫猜想的证明上取得了重大进展,特别是陈景润所取得的研究成果,轰动了国内外数学界,被公认为是最具有突破性和创造性的,是当代在哥德巴赫猜想的研究和证明方面最好的成果。

提问:看了上面的短片,你想到了什么?有什么问题想问吗?(学生可能提出什么样的数是素数等问题)

谈话:大家想知道什么样的数是素数吗?我们今天就一起来研究这一问题。(板书:素数)

[评析:通过介绍哥德巴赫猜想的有关史料,很自然地把学生的注意力集中到素数的概念上,激发了学生进一步探索和发现的欲望。同时,学生能从中感受到数学的奇妙与魅力,产生对数学的兴趣。]

二、 设疑引探,自主建构

1. 操作感受。

谈话:我们来做个实验。请同学们拿出信封里的小正方形,小组分工合作,分别用2个、3个、4个、6个、7个、11个、12个小正方形拼长方形,看看拼出的结果怎样。

学生在小组内活动,教师巡视并指导。

引导:仔细观察拼出的结果,你发现了什么?

通过比较学生会发现:用2个、3个、7个或11个小正方形拼长方形,只有一种拼法;用4个、6个或12个小正方形拼长方形,可以有两种或两种以上的拼法。

提问:为什么用2个、3个、7个或11个小正方形拼长方形只有一种拼法,而用4个、6个或12个小正方形拼长方形可以有两种或两种以上的拼法呢?(2、3、7或11只有两个因数,而4、6或12都有三个或三个以上的因数)

[评析:数学教学不仅要注重数学知识和技能的传授,更要让学生经历知识的形成过程。实验环节的设计,能引导学生在操作活动中自主发现自然数因数个数的特点,初步感知素数和合数的概念。]

2. 分类建构。

谈话:请同学们先在自己的练习本上写出1~20,并找出每一个数的所有因数,然后根据每个数因数的个数,将它们进行分类。

学生活动,教师巡视。

反馈:根据每个数因数的个数,你把这些数分成了几类?是哪几类?(根据每个数因数的个数,可以把它们分成三类:一类是只有两个因数的;一类是有三个或三个以上因数的;1只有一个因数,分为一类)

提问:只有两个因数的数,它们的因数有什么特点?(两个因数分别是1和它本身)

提问:有三个或三个以上因数的数,它们的因数有什么特点?(除了1和它本身外,还有其他的因数)

再问:为什么把1单独分为一类?(1是一个很特殊的数,它只有1个因数)

谈话:同学们通过自己的活动把自然数分成了三类,并总结出了这三类数的不同特点,那么,它们分别叫什么数呢?打开课本第78页,把例题认真地读一读,填一填,并和同桌的同学说一说你知道了什么。

学生自学课本之后,师生共同揭示素数和合数的概念(补充板书:和合数),同时明确1既不是素数,也不是合数。

提问:在2~20各数中,哪些数是素数?哪些数是合数?

[评析:让学生写出1~20各数的所有因数,并根据每个数因数的个数进行分类,为学生的自主探索留出了足够的时间和空间,提高了学生的参与度,突出了学生的主体地位。接着通过对三个问题的讨论,引导学生深入思考,发现素数和合数的特点。自学课本,既及时准确地揭示了素数和合数的概念,又为学生进一步清晰和修正已经形成的概念提供了机会。]

3. 交流质疑。

谈话:关于素数和合数,你还想研究哪些问题?还有哪些不懂的问题?

学生可能提出:素数有多少个?最小的素数是几?最小的合数是几?有最大的素数或合数吗?

根据提出的问题,有选择地引导学生交流和探索,同时解答学生提出的问题。

三、 巩固练习,深化认识

1. 试一试。

出示题目:先找出21、23、29的所有因数,再写出这三个数分别是素数还是合数。

先让学生说一说怎样找出每一个数的所有因数,再判断这三个数是素数还是合数,并说明理由。

2. 做想想做做第2题。

先让学生按要求划一划,再说一说哪些数是素数,哪些数是合数。练习后引导学生说一说怎样判断一个数是素数还是合数。

3. 做想想做做第3题。

学生独立完成判断,并说明理由。

四、 全课总结

提问:通过今天的学习,你知道了哪些知识?有什么新的收获?

五、 举例检验

谈话:我们已经认识了素数,再回过头看一看哥德巴赫猜想(出示哥德巴赫猜想),你认为这个猜想正确吗?你能举几个例子检验一下吗?

学生举例检验。

谈话:通过检验,我们发现哥德巴赫猜想是正确的,只是至今还没有人能从理论上完全证明它。我相信,在不久的将来,一定有人能解开哥德巴赫猜想之谜,让我们一起努力吧!

[评析:利用所学知识解释和检验哥德巴赫猜想,既巩固了本节课学习的内容,又进一步激发了学生的探索愿望。]

[总评]

在典型的数学背景材料中激发探索新知的兴趣。数学是人类的一种文化。本节课的设计,教师独具匠心地把素数与合数的教学置于数学文化的背景之中,让学生感受数学文化的魅力,激发了学生对数学的兴趣。课的开始,为学生呈现了有关哥德巴赫猜想的数学背景材料,这是一个200多年来诸多数学家不能解决的问题,但中国的数学家在这方面取得了重大的突破,激发了学生的民族自豪感,数学的奇妙吸引了学生的眼球。而这一情境中素数的概念学生还不了解,解开素数的奥秘自然地成为学生的自觉需要。课的结尾,再一次提出哥德巴赫猜想的问题,让学生通过举例检验猜想的正确性,使课的首尾呈呼应之势。同时,通过简短的语言,引导学生树立探索数学奥秘的理想,体现了教师对促进学生持续发展的关注。

在有效的探索活动中逐步明确素数和合数的内涵。动手实践、自主探索与合作交流是学生学习的重要方式。本课中,教师寓素数与合数的概念于拼长方形的操作活动中,先让学生在操作中初步感受小正方形的个数与拼成长方形的种数之间的关系,将注意力集中到一个数的因数上来;接着,通过写出1~20的所有因数,并根据各个数因数的个数对这些数进行分类,引导学生逐步概括出素数和合数的共同点;最后,让学生自主阅读课本,明确素数和合数的内涵。学生在这一过程中,积累了丰富的数学活动经验,发展了自主探索的意识和数学思考能力,增强了学好数学的信心。

省编数学教案最新5篇相关文章:

中班浮与沉教案最新5篇

熊来啦大班教案最新5篇

关于安全跑的教案最新5篇

幼儿园雨教案反思最新5篇

小社会领域教案最新5篇

中班有关光的教案最新5篇

消防安全教育教案最新5篇

幼儿园安全活动教案最新5篇

2023年安全教育教案最新5篇

关于吃的大班教案最新5篇

省编数学教案最新5篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
85781