为了适应学生的学习进度,教师需要根据实际情况动态调整已有的教案,,教案中每个教学环节之间的衔接紧密,有助于学生形成系统的知识体系,总结了小编今天就为您带来了北师大版五年级下数学教案8篇,相信一定会对你有所帮助。
北师大版五年级下数学教案篇1
教学目标:
1、在丰富的具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数。
2、运用平均数的知识解释简单生活现象、解决简单实际问题的过程专用,进一步积累分析和处理数据的方法,发展统计观念。
3、在活动中,进一步增强与他人交流的意识与能力,提高合作学习的效率。
4、在解决实际问题中,能体验运用已学的统计知识解决问题的乐趣,建立学习数学的信心。
教学重点:
理解平均数的意义,学会求简单数据的平均数。
教学难点:
理解平均数的意义。
教学准备:
课件、练习纸。
教学过程:
一、问题引入
1、出示例3的图
谈话:四年级的男、女生进行套圈比赛,每人套15个圈。你想了解他们的比赛情况吗?
第一轮:
课件出示空白的男、女生套圈成绩统计图,谈话:我们来看这两个小组同学的套圈情况,第一个出场的男生是小刚,女生是小燕(分别出示表示两位同学套中个数的直条),他们各套中多少个?(6、4)谁套的准些?你是怎样看出来的?
谈话:这数字6可以代表男生组的水平,那么女生组的水平可以用?来代替。
第二轮:
谈话:第二个出场的男生分别是小明(课件出示直条6),女生是小娟课件出示直条4),(结合手势,表示整体)比较每组中同学的比赛成绩,你认为是男生套的准还是女生套的准些?你是怎样比较出来的?(预设:生1,比总数,生2,比每个人套中的个数)
提问:这时,你能用哪个数来表示男女生的水平吗?(预设:生1,6、4,生2,12、8)让学生说说分别表示什么意思。
第三轮:
谈话:第三、四个出场的男生是小宇和小杰(7、9),第三、四、五个出场的女生分别是小敏、小芸和小芳(7、5、10)(完整出示条形图),现在,你能比较是男生套的准些还是女生啊?你想怎样来比较呢?学生讨论
提问:我们先来想想,你能用哪个数来表示男女生的一般水平?
生交流,总结出(28、30)来表示不合适,也就是比较总数不合适。
那你认为要找哪个数,才能代表男生组的一般水平呢?(这个数要基本反映一组数的一般水平,在数学上,我们把这种数叫做平均数)(板书课题)
二、探究求平均数的方法
1、探究男生求平均数的方法
谈话:我们先来仔细找一找男生组的这个数,男生的得分各不相同。我们怎么来找这个数呢?套的最多的和最少的能代表整体水平吗?那你觉得这个数应该在什么范围呢?
给大家3分钟,在练习纸上想办法找到男生组的那个数。(练习纸)
交流:
方法一:移多补少(课件演示)
方法二:先合后分(说说各数表示的意思)
预设:
如果只答出方法一:除了像这样局部调整,得出平均数,还有其它调整方法了吗?给大家一个小提示:可以把所有男生的个数先看成一个整体,然后再把这些个数平均分配给他们。
如果只答出方法二:除了像这样,把他们的得分先加起来,再重新平均分配给他们。还有其它调整方法了吗?给大家一个小提示:能否只移动其中一小部分个数,使得男生的个数一样多。
交流。
小结:同学们,刚才我们用两种不同的方法找到了能表示男生组的这个数7,我们来回顾一下。
一种方法,通过移动来局部调整,把多的一部分,移给少的,从而得到男生的平均个数,你想帮它取个名字吗?(板书“移多补少”);
另一种方法,通过整体重新分配,先把所有的个数先加起来,再平均分给他们,也得到了男生的平均个数,你也能取个名字吗?(板书“求和平分”)。
2、揭示课题
谈话:两种方法都得到了一个新的、能够反映男生组整体情况的数据,就是7个。没错,这个数就是男生组(6、6、7、9)的平均数。
用课件显示图中平均数画线,直观感知平均数的范围。
让学生也在练习纸上画线。请你用一条线把这个数7表示到图上来
提问:得到的这个数7表示什么含义?你觉得这个数是一个怎样的数?能不能说男生组中每人都套中了7个?这个数7与小宇套中的7表示的意思一样吗?平均数比最厉害的个数?比最差的呢?
3、迁移类推,感悟意义
谈话:现在,请你们也来找一找女生组的平均数吧。(学生在练习纸上操作并交流)
说说“6”的意义
交流,提问:现在可以比较出哪组套的准了吗?(完整板书)
提问:仔细观察这两组的平均数,你想说些什么?原来的数据和平均数的大小,有什么发现?高于、低于平均数的有几个?(其中的个数有的比平均数高,有的比平均数低,初步感受平均数的范围)
感受平均数的优势:老师啊觉得平均数真厉害,因为它在人数不等的情况下也能公平的比较出男生和女生哪组的水平高,老师说的对吗?
三、巩固练习,应用平均数
1、书本练一练。(课件逐个出示笔筒)
第1个笔筒有( )枝,第2个有( )枝,第3个笔筒有( )枝。
怎样移动笔筒中的铅笔,找到平均每个笔筒有多少枝铅笔。(课件动态显示移多补少的过程,然后逐步变化为条形图)我们也可以用条形统计图来表示,这样更直观。(显示移的过程)
交流:当然,你还可以怎样来解决这个问题?(求和平分)
如果用求和平分,怎么计算?综合算式?
2、第一题
出示丝带图,提问:这时你能用移多补少的方法一下子找出它们的平均数吗?
估一估,平均长度到哪儿?
想一想,应该在多少厘米到多少厘米之间?(平均数在最小数和最大数之间)
算一算,让学生独立列式解答,再交流
提问:如果每条丝带都增加1厘米,平均长度会有什么变化?(相当于每条丝带的长度增加了1厘米,也就是平均长度在原来的基础上增加1厘米)
如果把其中一条丝带的长增加3厘米,3条丝带的平均长度是多少厘米?如果减少3厘米呢?(刚刚每条丝带增加1厘米,总体增加了3厘米,那么现在呢?)
指出:一组数中有一个数据变化了,这组数据的'平均数也会发生变化,平均数很敏感。
3、第4题(假如我当经理)
先估计一下苹果和橘子平均每天卖出的箱数,再同桌分工计算,然后画出表示平均数的那条线。
提问:如果你是水果店的经理,看到这样的数据和平均数的情况,你会有什么想法?
4、第3题(篮球队员的身高)
提问:李强是学习篮球队队员,他身高155厘米,可能吗?学校篮球队可能有身高超过160厘米的队员吗?
(出示篮球队5名队员的身高统计表)
小结:同学们,平均数是反映一组数据整体情况的数,如果只知道平均数,要去推测其中一个数据是多少,这个数据会有很多种可能性,这就体现了依据平均去推测其中一个数据的(不确定性)。
但是,知道了一组数据的每一个数据,可以用“移多补少”或者“先合后分”明确地得到平均数是多少,体现了求平均数的(确定性)
思考:如果姚明加入学校篮球队,平均身高会如何变化呢?(图片显示)
出示现在的平均身高,提问:这时得到的平均身高,具有什么样的特点?为什么增加了姚明,小队员的身高都在平均数一下了?(太高的人,对平均数的影响很大,所以姚明的身高在这组数据中属于极端数据,具有极端数据的话,平均数就变得不一样了)
介绍:在生活中,也会遇到像这种不一样的平均数,你想知道吗?课件出示“你知道吗?”(生读)
谈话:通过__的介绍,我们对平均数又有了一些新的认识,那么我们就带这这个新认识去看看吴萌的诗朗诵比赛吧。
完成练习八第9题。(口答综合算式)
四、总结经验,感悟平均数。
通过这节课,你有什么收获?你对平均数有那些认识?
总结:通过今天的学习,我们知道平均数在生活中有很大的作用,愿大家能带上今天的学习内容,更好地认识生活中与平均数有关的各种问题。
北师大版五年级下数学教案篇2
教学目标:
1、使学生理解长方体和正方体表面积的含义,在理解的基础掌握长方体表面积的计算方法。
2、通过动手操作,合作交流。培养学生的观察能力、概括推理能力。发展学生的空间观念。
3、通过自主探究,发展学生的空间观念。调动学生学习的积极性,激发学习数学的兴趣。
教学重点:
建立表面积的概念和长方体表面积的计算方法。
教学难点:
找出长方体的长、宽、高和每一个面的长和宽之间的关系。
教学准备:
1、教具:长方体纸盒、长方体纸盒展开图,课件。
2、学具:长方体纸盒、剪刀.
教学过程:
一、游戏激趣,导入新课。
1、同学们,我们来玩个“猜谜语”游戏,猜对的同学可以获得奖品,请听题
(1)紫色树,紫色花,紫色花开结紫瓜,紫瓜柄上长小刺,紫瓜里面装芝麻。(打一种蔬菜)
(2)红公鸡,绿尾巴,脑袋埋在地底下。(打一种蔬菜)
2、大家的表现真出色,我还为同学们准备了一个大礼物,想将它送给这节课发言积极的同学,可是这个盒子不漂亮。现在我要用彩纸包装一下。(师动手包装)
你知道我用了多大的彩纸吗?解决这个问题,也就是要求长方体的什么?(长方体的表面积)看看长方体有几个面?是那几个面?(学生找出后,标出上、下、前、后、左、右面)重新摆放长方体,它的前面在哪里?在长方体的这几个面中,那些面的大小是相等的?这几个面的面积大小也就叫做什么?(长方体的表面积)板书课题
?设计意图:好的开头是成功的一半。因此在课始就设计小学生感兴趣的游戏活动,调动学生学习的热情。利用发奖品时,遇到的新问题引入新课。再现生活中的包装情景,使学生更能体会到长方体表面积计算在生活中的应用,也使表面积概念更直观,形象化。】
二、动手实践,探索新知。
(一)长方体表面积的意义。
1、请同学们拿出自己的.长方体学具,想想刚才包装的是长方体的哪几个面里?什么叫长方体的表面积?标出“上”、“下”、“前”、“后”、“左”、“右”面。
2、观察每个面的长和宽与长方体的长、宽、高有什么关系?(同桌交流后,汇报交流)
(二)长方体表面积的计算方法。
1、动手操作、自主探究。
那么怎样计算你的长方体盒子的表面积哪?
请同学们在小组内通过量一量、剪一剪、拼一拼、摆一摆的方法,试试求出长方体的表面积,同时把讨论的结果写在记录单上(形式不限),看哪一小组想出的方法多。
(教师对学习困难的学生进行指导)
2、交流汇报、总结规律。
(1)哪一个小组到前面来汇报你们的研究成果?
学生汇报算式,引导观察,用什么方法计算表面积的?(对表达流畅,思维敏捷的进行鼓励)
(2)小结长方体表面积的计算方法,根据学生的回答并板书。
分析这几种计算表面积的方法,为什么这样算?在这几种算法中你喜欢用哪一种?与同桌说一说。
?设计意图:学生是学习的主人,让学生经历知识的形成过程,自己构建知识。利用充足的时间,动手操作,探索、交流合作,发现规律,获得新知。】
3、即时反馈、巩固新知。
请同学们算一算,老师的这个礼品盒的表面积是多少?(独立思考后,小组内交流汇报)还有别的计算方法吗?你认为那种方法简便?
?设计意图:运用新知解决问题,初步体验数学的有用性,数学与生活的紧密联系。在多样化算法中,引导学生比较,并逐步理解各种算法的优缺点。在解决问题中自觉实现化算法】
(三)尝试探索正方体表面积的计算方法。
正方体的表面积应该如何计算?
讨论,指名反馈,得出正方体表面积的计算方法。
正方体的表面积=棱长×棱长×6,为什么要乘以6?
1、给棱长为0.8米的正方体木箱表面涂上油漆,涂油漆部分的面积是多少?(独立探索,再交流计算方法。)
如果正方体木箱没有盖,涂油漆部分的面积是多少?
?设计意图:通过计算正方体表面积,进一步理解表面积含义。通过变式练习,体会用数学解决实际问题时,要灵活运用。】
2、归纳小结。
计算长方体、正方体表面积的关键是什么?如何计算?
北师大版五年级下数学教案篇3
设计说明
复习课既不像新授课那样有“新鲜感”,又不像练习课那样有“成就感”,还担负着查缺补漏、系统整理和巩固发展的任务。为了让每个学生都积极参与复习,在组织教学时,应该营造一个轻松、平等、和谐的学习氛围。让学生在独立思考、合作交流的过程中“温故而知新”。
1.创造性地使用教材。
在教学设计中,灵活地运用教材,既不要夸大它的作用,又不要削弱它的功能,要创造性地发挥它应有的功能。作为复习课,设计要有新意,要创造性地使用教材,因此本节课的教学设计进行了适当的处理,这样更符合本地区学生的实际需求。
2.重视对学生解决问题能力的培养。
教学中,把所学的知识进行回顾,然后利用这些知识来解决问题,结合教材习题逐一练习。通过练习,将学生所学的知识整理成知识网络,提高学生解决问题的能力。
课前准备
教师准备 ppt课件
教学过程
⊙导入新课
1.同学们,这节课我们结合教材习题,复习分数加减法这一单元的内容。想一想,这一单元我们都学习了哪些内容?
2.学生独立思考后,在小组内交流。
(异分母分数加减法的计算方法、分数加减混合运算的运算顺序及简算、分数与小数的互化三部分内容)
3.小组汇报,全班交流,互相评价,呈现知识结构图。
分数加减法
设计意图:引导学生回顾分数加减法的相关知识,复习本节课中的知识点,在教师的引导下画出知识结构图,帮助学生建立这部分知识内容的知识网络,便于学生整理和记忆相关知识。
⊙整理复习
1.复习异分母分数加减法的计算方法。
(1)复习异分母分数加减法应注意什么?结合具体实例说一说。
(2)先想一想异分母分数加减法应该怎样计算,再计算下面各题。
+ -
结合上面的算式复习异分母分数加减法的计算方法:①异分母分数相加减:先通分,然后按同分母分数加减法的计算方法进行计算;②分数加减法对计算结果的要求:能约分的要约成最简分数。
(3)完成教材94页1题前两个小题的计算。
+ -
解答: + -
=+=-
==
=
2.复习分数加减混合运算的运算顺序。
(1)先想一想分数加减混合运算应该怎样计算,再计算下面各题。
+- -+
1-- 1-
①复习分数加减混合运算的'计算方法。
在计算分数加减混合算式时,主要有以下两种方法:一是先将所有的分数全部通分,再进行计算;二是先通分需要进行通分的部分,再进行计算。
②复习分数加减混合运算的运算顺序。
分数加减混合运算的运算顺序和整数加减混合运算的运算顺序相同。没有括号的,要按照从左到右的顺序依次进行计算;有括号的,要先算括号里面的,再算括号外面的。
③学生在小组内讨论、计算后交流结果。
(2)完成教材94页3题最后一竖排两个小题。
+- -
=+-=-
=- =-
== =
①引导学生观察第2个小题,课件出示学生的不同解法。
--
=-- =--
=- =-
= =-
=-
=
②从上面的解法中,你发现了什么?
学生讨论、交流后小结:整数加减法的运算定律对分数加减法同样适用。
3.复习分数与小数的互化。
先想一想分数、小数是怎样互化的,再计算下面各题。
0.75=( ) =( )
2.12=( ) 4=( )
北师大版五年级下数学教案篇4
教学目标和要求
1.经历从时间问题中抽象出百分数的过程,理解百分数的意义,会正确读百分数。
2.在具体情境中,解释百分数的意义,体会百分数与日常生活的密切联系。
教学重点
1.理解百分数的意义
2.体会百分数的必要性
教学难点
理解百分数的意义
教学准备
1.让学生客气课前收集百分数的资料。
2.计算机课件
教学时数
1课时
教学过程
一、联系实际、引入课题
1.教师结合自己学校的足球对的数据呈现问题,激发学生学习兴趣。
2.让学生自己解决“比一比”中让学生罚点球问题,接着讨论“哪个品种发芽情况好”的问题。学生讨论后汇报。
教师引导学生两个问题的解决过程,让学生体会百分数的比要性,从而引入百分数,(教师板书)
二、 教学百分数的读写
写作22%读作:百分之二十二
三、介绍百分数的意义
1.教师通过让学生举出生活中常见的百分数,比如各种酒类的'浓度表示,让学生体会百分数只表示两个数的相比关系,不表示一个数的值,所以百分数也叫百分比或者百分率。
2.练一练
让学生结合百分数的意义进一步说明上面题目中百分数所代表
的具体意义。“罚点球”其实就是求一个人的进球率,“哪个品种发芽情况好”指的是发芽率。
三、教“读一读说一说”
1.让学生看课本插图,然后根据自己的理解说说每个情境百分数的意义。
2.教师鼓励学生自己“找一找生活中的百分数”并在全班交流。
四、练习
让学生自己完成,全班讲评。
五、总结
提问:这节课你有什么收获?
北师大版五年级下数学教案篇5
一、学习目标
(一)学习内容
“正方体的认识”是《义务教科书数学》(人教版)五年级下册第三单元第20页例3以及课后做一做。本节内容是在学生已经直观的认识了长方体、正方体等立体图形的基础上进行教学的。学生能通过实物或模型辨认正方体,知道正方体有6个面,每个面都是正方形。在教学正方体时,应激活经验,回顾特点,对比长方体特点,感知“正方体是特殊的长方体”。
(二)核心能力
能运用迁移类推的学习方法,通过观察、操作,认识正方体,建立空间观念,提高分析对比,抽象概括的能力。
(三)学习目标
1.在认识长方体的基础上,通过观察正方体、动手操作折正方体,自主探究正方体关于面、棱、顶点的特征,建立空间观念。
2.通过对比分析长方体和正方体的特征,抽象概括出长方体和正方体之间的关系。
(四)学习重点
掌握正方体的特征,理解长方体和正方体的关系。
(五)学习难点
建立空间观念,形成立体图形的初步印象。
(六)配套资源
实施资源:《正方体的认识》名师教学课件,各种正方体实物,长方体模型,剪好书本第123页的正方体展开图。
二、学习设计
(一)课前设计
(1)长方体的特征有哪些?我们是从几方面来认识它的?请自己整理出来。
(2)请找找生活中的正方体物品,并思考:关于正方体你都知道了哪些知识?
(二)课堂设计
1.谈话导入
师:课前让同学们寻找生活中的正方体物品,谁来和大家分享一下你找到了什么?
师:生活中有许多物体的形状是正方体,正方体也叫立方体,这节课我们一起来认识它。板书课题。
?设计意图:结合生活实际,学生对正方体已有一定的认识,因此通过分享学生在生活中找到的正方体,使学生对正方体有了初步的了解,激发了进一步学习正方体的兴趣。】
2.问题探究
(1)观察模型,探究特征
师:长方体和正方体都属于立体图形,回想一下,我们是从几方面来认识长方体的?
(面、棱、顶点,长宽高)
师:对于正方体,你们准备从几方面来认识?
生自由发言。
师:现在请你们借助手中的正方体物品来观察研究,看看正方体都有哪些特征?
同桌合作,自主探求正方体的特征。
交流汇报。(汇报时重在交流探究的过程和方法)
预设:
①正方体有6个面,每个面都是正方形并且6个面都相等;
②正方体有12条棱,每条棱都相等;
③正方体有8个顶点。
小结:同学们从棱、面、顶点三方面进行研究,得出了“正方体是有6个完全相同的正方形围成的立体图形,12条棱长度相等”的结论。
(2)制作模型,加深认识特征
师:认识了正方体的特征,现在请你们动手制作一个正方体,制作完后,量出它的棱长是多少厘米,并向同桌介绍你制作的正方体的特征。
用剪好的书本第123页的正方体展开图做一个正方体。
展示学生作品分享制作感想。
?设计意图:学完长方体后,学生已明确了面、棱、顶点的概念,知道了从哪些方面探究图形特征,因此放手让学生自主探究,充分经历自主探究的过程,通过观察、动手,学生亲身感知正方体这个立体图形。考查目标1】
(3)对比观察,探究长方体和正方体的关系
师:我们都是从面、棱、顶点来认识长方体和正方体,它们之间有什么相同点和不同点呢?请4人小组,用你们喜欢的方式整理出来。
交流汇报后,教师用表格的形式进行整理。
引导归纳长方体和正方体的关系:正方体可以看成是长、宽、高都相等的长方体。
3.巩固练习
(1)第20页的做一做。用棱长为1cm的小正方体搭一搭。
①搭一个稍大一些的正方体,至少需要多少个小正方体?动手试一试。
②用12个小正方体搭一个长方体,可以有几种不同的搭法?记录搭的长方体的长、宽、高。
③搭一个四个面是正方形的长方体,其余两个面有什么特点
4.课堂总结
师:通过这节课的学习,你有什么收获?
小结:从面、棱、顶点三方面认识了正方体,有6个面,都相等,12条棱也都相等,有8个顶点,正方体是特殊的长方体。
北师大版五年级下数学教案篇6
教学内容:
教材28-29页例1及做一做,练习七1-3题
教学目标:
1、通过观察、操作活动,让学生初步认识轴对称图形的基本特征。
2、学生的观察能力、想象能力得到培养,进一步发展学生的空间观念,同时感受对称图形的美。
教学重点:
认识轴对称图形的基本特征。
教学难点:
能判断出轴对称图形。
教学教法:
观察、讨论法。准备一些轴对称图形的图片或剪纸(如窗花),也可用电脑上网收集各种各样轴对称的图片,让学生结合教材中的实物图进行观察、分析,找出这些图形有什么共同特点。
教学过程:
一、欣赏图片,建立表象
出示教材第28页单元图。
谈话:同学们,你们去过游乐场吗?这些玩具大家都玩过吗?那你对这个场景肯定不陌生了,你能给大家介绍下这个游乐场里有哪些好玩的项目吗?(请认识的学生介绍项目。)
小结:你瞧,这个游乐场可好玩了,高高的上空有缆车、摩天轮,下面还有小火车、滑滑梯、飞机,孩子们在这里玩得可高兴了,他们还在这儿放风筝呢,这里不仅好玩,还藏着好多数学知识,想不想认识它们呢?这节课我们就要在这样的游乐场里学习数学知识。
二、互动新授
1、小组合作,探究对称。
教师点击蜻蜓风筝和蝴蝶风筝的图形。
谈话:你看,这是在游乐场上的蝴蝶风筝和蜻蜓风筝,认真观察,它们在形状上有什么特征?(让学生用自己的语言说。)
教师小结并过渡:像这些物体,它们的左右两边是完全一样的,我们把这种现象称为对称,在我们的生活中还有着许多这样的物体,让我们一起去欣赏下吧。(教师出示叶子、蝴蝶和天安门图。)
师生谈话:从这些物体中,你发现它们都有什么特征呢?把你的发现在小组内说一说。
学生自主交流。
谁愿意来把你们组的发现说给大家庭?(学生在汇报时,教师尽量鼓励学生用自己的语言来表达,对学生一些不准确的表达无须过分强求,不必可以纠正。)
2、教学对称
师:同学们刚才观察得非常仔细,发现了这些各式各样的图形都有一个共同的特征,就是它们的左右两边都是完全一样的。这种现象在数学上称为对称,这些物体就是对称现象。
北师大版五年级下数学教案篇7
设计说明
自主探究、合作交流是学生学习的重要方式,也是《数学课程标准》所提倡的。本节课所学习的“用坐标图确定物体的位置”是对学生已有经验的提升,是将用生活经验描述位置上升到用数学方法描述位置,旨在发展数学思考,培养学生的空间观念,为后续学习奠定基础。结合教学目标及学情实际,本节课的教学设计如下:
1.创设问题情境,激发学生的学习兴趣。
教学情境的创设,能激活学生已有的描述物体位置的经验,激发了学生的学习兴趣,使学生带着问题主动地投入到新课学习中。
2.引导探究,总结方法,培养学生的学习能力。
引导学生在自主探究、小组合作、讨论交流中进行理解、发现、归纳、总结,使学生掌握知识的同时,实现发展学生思维,培养学生学习能力的目的。
课前准备
教师准备 ppt课件
教学过程
提出问题,创设情境
师:上节课老师带领同学们去动物园转了一圈,大家都准确地找到了各个场馆的位置。请说说你们是怎样找到的。
生:我们首先要确定好要参观的场馆,然后利用场馆分布图以现在的位置为观测点,确定方向(或角度),再根据距离就能准确找到要去的场馆了。
师:回答得真好。乐乐去大鸣山游玩时迷失了方向,他想找到大本营的位置,你能帮他找到大本营吗?
设计意图:通过回顾确定位置的相关知识,有利于唤起学生已有的知识经验,为新课作铺垫。
自主探究,合作交流
1.出示大鸣山风景区的平面图。
(1)认真观察平面图,找一找,标出乐乐现在的位置(大鸣山)。(学生独立完成,集体订正)
(2)思考问题:要救出乐乐需要知道哪些条件?
(小组讨论后汇报结果)
生1:需要知道搜救原点是大鸣山,还要知道大本营在大鸣山的什么方向上。
生2:我认为不仅要知道大鸣山在大本营的什么方向上,还要知道大鸣山和大本营之间的距离。
师:你们同意哪一种说法呢?
生:我认为第二种说法能更准确地找到乐乐的位置。
(3)想一想,画一画,大本营在大鸣山的什么方向上,并测量出距离。
(学生独立思考、解决问题,然后各小组进行讨论与交流)
生展示成果,师小结:大本营在大鸣山北偏东45°方向,距离大鸣山大约560米。
设计意图:学生通过自主探究、合作交流得出了确定两地具体位置的方法和步骤。
2.下图是数学迷画的,你能看懂吗?说一说大本营的位置。
师:观察数学迷画的图,说一说与自己所画的有什么异同?说一说大本营的位置。
(小组交流、讨论异同点,并说出大本营的具体位置)
设计意图:在此环节中,让学生通过看一看、议一议等活动,让学生体会确定物体位置方法的多样性、数学与生活的紧密联系。
巩固练习
1.学生独立思考、自主完成教材68页1题,然后小组交流。
2.完成教材68页2题。(进一步巩固确定位置的方法及描述简单路线图的方法。结合具体情境,用自己的语言叙述如何确定物体的位置)
3.完成教材68页3题。
课堂小结
师:这节课我们学到了什么?以后我们出去游玩时要注意什么事项?
板书设计
确定位置(二)
画坐标图的步骤:
(1)确定观测点;
(2)从观测点引出横坐标和纵坐标,并把观测点和被观测点连起来;
(3)标出连线与横坐标或纵坐标的夹角;
(4)标出连线的长度。
北师大版五年级下数学教案篇8
教学内容:
北师大版小学数学五年级上册第82——83页的内容。
教学目标:
1、结合具体的图形,明确什么是“点阵”,了解点阵的基本知识。
2、能在具体的观察活动中,发现点阵中隐藏的规律,体会图形与数的联系。
3、培养学生观察、概括与推理的能力。
4、了解数学发展的历史,感受数学文化的魅力。
教学重点:
通过观察活动,引导学生探索发现“点阵”中隐藏的规律。
教学难点:
能从不同的角度观察到点阵图形的不同排列规律,并能把观察到的规律用算式表示出来。
教学准备:
(师)多媒体课件;(生)彩笔。
教学过程:
一、谈话引入
(老师在黑板上画点)今天给大家请来了一位图形朋友——点,不要小看了这个小小的点,早在2000多年前,古希腊的数学家们就是从这样一个小小的点开始研究,发现了由许多个这样的点组成的点子图形中的规律,还给这些图形取了一个好听的名字,叫点阵。同学们想不想过一把当数学家的瘾,自己来寻找这些规律?今天,我们就一起来探究点阵中隐含的规律。(板书课题:点阵中的规律)
二、探究正方形点阵中的规律
1、探究正方形点阵的规律。
(1)我们一起来看看数学家们当年研究的点阵图,边看边说出各个点阵的点子数。
教师依次出示前四个正方形点阵图,并逐步引导学生想像、猜测:下一个点阵图会是什么样子呢?
(随着点阵图的依次出现,学生的思维逐渐活跃,当第三个点阵图出现的时候,学生已经忍不住地说出了点数。说明学生已经发现了正方形点阵中的规律。但这时,教师没有急于让学生发表自己的看法,而是给学生留出了完善自己想法的时间,同时也暗示学生:规律的呈现不能依靠一个或几个图形来归纳,应该有耐心地继续自己的观察活动。)
(2)除了能说出各个点阵的点数之外,仔细观察点阵图:你还有什么其它的发现?
(学生能够发现各个点阵的形状是正方形的,还能用1×1、2×2、3×3、4×4这样的算式来表示每个点阵的点数。)
(3)根据刚才发现的规律,想:第五个点阵是什么样子,独立画出来,并用算式表示点数。
(学生独立画出第五个5×5的点阵图)
(4)思考:照这样的规律继续画下去,第100个点阵的点数如何用算式来表示?第n个呢?
(结合发现的规律,引导学生逐步完善自己的想法,建立总结正方形点阵规律的模型。)
小组讨论:你觉得每个正方形点阵的点子总数与什么有关系?
(学会用简单的语言表述自己的想法,使得初步的形象感知得到提升)
小结:每个正方形点阵的点子总数可以看作是一个相同数字相乘的积,这个数字与点阵的序号有关,与每个正方形点阵每排的点子数也有关系。
2、刚才我们研究了一组正方形点阵中隐含的规律,那么对于同一个点阵来说,如果划分的方法不同,所呈现的规律也就不同。
(1)请大家仔细观察第五个正方形点阵中点的划分方法,你能发现什么规律?
学生会有如下发现
①是用折线划分开的。
②每条线内的点分别是1、3、5、7、9。
③这个正方形点阵的点数就可以表示为:1+3+5+7+9=25。
(2)如果把每条线所包围的点子数记下来,如何用算式来表示?
第一条线: 1 = 1;
第二条线: 1+3 = 4;
第三条线: 1+3+5 = 9;
第四条线: 1+3+5+7 = 16;
第五条线: 1+3+5+7+9 = 25;
(3)每条线所包围的点子数与前面研究的一组正方形点阵的点子数有什么关系?(正好是第一到第五个点阵的点子数。)
(第二、三个问题需要老师引导,学生自己难以发现,尤其是第三个问题,学生很难想到它们和开始时依次出现的几个正方形点阵的点数之间的关系。当学生想不到这种联系时,是否一定要引导?)
(4)思考:表示这个正方形点阵的点数的`算式有什么特点?
(这个点阵的点子总数可以看作是连续奇数的和。)
(5)如果按这样的划分方法划分第六个正方形点阵,它的点数该如何表示?
1+3+5+7+9+11 = 36;
(6)前面老师是把这个5×5的正方形点阵用折线进行了划分,你们还有哪些不同的划分的方法?在用算式表示上有什么规律?
学生的划分有以下几种
①横向划分:用算式表示为5+5+5+5+5;
②竖向划分:用算式表示为5+5+5+5+5;
③斜向划分:用算式表示为1+2+3+4+5+4+3+2+1;
至于前面两种方法,都可以简单地表示为:5×5;重点引导学生讨论第三种划分方法,观察这个算式,你们发现了什么?
学生的发现如下
算式里最大的数是5;
从1开始加到5再加回到1;
这个算式是两边对称的;
这个点阵的点数是中间那个数字5乘5的积;
教师引导:照这样的规律类推,第六个正方形点阵的点数如何表示?第9个呢?第n个呢?
(在这里把寻找不同划分方法的任务交给学生,既是学生前面探究过程思维的延续,又体现了学生学习的自主性,还用另一种方式解读了“练一练”中的第一题。培养了学生从不同的角度去发现问题,总结概括规律的能力。)
三、延伸应用,形成策略
1、除了我们刚才研究的正方形点阵,请大家猜猜看,还会有什么形状的点阵呢?
(学生列举了长方形点阵、三角形点阵、圆形点阵、椭圆形点阵等等。)
2、请大家尝试运用前面学会的方法探究长方形点阵规律。
(1)小组合作研究:如何用算式表示每个长方形点阵的点子数?
学生通过讨论很快达成共识
1×2;2×3;3×4;4×5;
(2)请你独立画出第五个长方形点阵并用算式表示出点数。
(学生独立画图并写出算式,互相交流。)
算式表示为:5×6;
(3)思考讨论:你们觉得自己所写的算式中的数字与图形中的点子之间有什么关系?
(学生的发现为:乘法算式中的第二个因数总是比第一个因数多 1,第一个因数是长方形点阵的竖排点数,第二个因数是长方形点阵的横排点数。并没有发现第一个因数与点阵序号间的关系,因此,当要求他们写出18个点阵的点数时,出现了两种不同的答案:17×18、18×19。在争论各自的理由时,学生的注意力才联系到了点阵的序号与算式的关系,从而确定了正确答案。)
(4)照这样继续写,你能写出第n个长方形点阵的点数吗?
学生可以很顺利地写出:n×(n+1)。
3、看来对于任何一个点阵,只要我们认真观察研究,总能发现其独特的规律。在小组内研究三角形点阵中的规律,要求
(1)个人思考活动:观察给出的四个三角形点阵的规律,画出第五个三角形点阵。
(2)小组讨论:对自己画出的第五个三角形点阵进行划分,你能想到哪些不同的划分方法?分别用算式表示点数。
(学生活动)
全班交流
划分一:横向划分,1+2+3+4+5=15;
划分二:竖向划分,1+2+3+4+5=15;
划分三:斜向划分,1+2+3+4+5=15;
划分四:折线划分,1+5+9=15;
(对于前面的三种划分方法,都在我的预设之内,学生到此,已经很轻松地用语言表述出自己的想法:这样的三角形点阵的点数是从1开始的连续自然数的和。而对于第四种划分方法,是我没有想到的。有一个孩子却用非常强烈地要求,表达了自己的这种划分方法,并且说出了这个算式依次递加4的规律。)
4、同学们真了起!真正具有未来数学家的风范,用自己的聪明才智,发现并总结了各个不同的点阵图中隐藏的规律。那么你觉得应该从哪些方面来探究点阵的规律?
学生交流
仔细观察点阵的形状;
数清每一行的点子数;
看清前后两个点阵的变化……
(在这里不需要学生说出多么专业的、深奥的数学原理,只是引导学生对自己探究性学习方法的一个总结,尽管语言可能不够简练,总结不够到位,只要学生用自己的语言在表述,就是对学生思维训练的一个提升,一种飞越。)
四、课堂总结
1、点阵的知识在生活中有着广泛的应用,比如北京奥运会开幕式上的“击缶表演”、“太极表演”等,都是把一个人看作了一点,来排列有规律的队形。你还知道什么地方运用了点阵的相关知识?
五子棋、阅兵式的方队、节日的花坛……
2、课后继续搜集点阵的相关资料,下节课继续交流。
(在这里,把学生的课堂学习延伸到生活,链接到学生已有的相关生活经验,然后让学生在生活中继续寻找哪里用到点阵的知识,体现了数学与生活的密切联系,数学来源于生活,又应用于生活。)
北师大版五年级下数学教案8篇相关文章: