五年级数学教案上册人教版教案5篇

时间:
Surplus
分享
下载本文

教案中适当的评价标准能够帮助教师及时反馈学生的学习成果,一份具备灵活性的教案能够适应课堂上的变化,使教学更具适应性,总结了小编今天就为您带来了五年级数学教案上册人教版教案5篇,相信一定会对你有所帮助。

五年级数学教案上册人教版教案5篇

五年级数学教案上册人教版教案篇1

教学内容:

人教版第五单元简易方程第1节用字母表示数52—53页

教学目标:

1、经历用字母表示数的过程,初步理解用字母表示数的意义;

2、能用含字母的式子表示数、数量关系或计算公式。

3、使学生经历把实际问题用含有字母的式子进行表达的抽象过程,体验用字母表示数的简明性。

4、体会用字母表示数的简洁和便利,感受符号化思想,培养学生用字母表示数的意识和兴趣。

教学重点:

用字母表示数的意义及用字母表示数量关系。

教学难点:

理解并掌握含有字母的乘法式子的简便写法。

教学准备:

多媒体

教学过程:

一创设情境,生成问题

生活中,我们都见过哪些字母?它们都代表什么呢?学生自由汇报结合课件出示你们看,字母不仅和生活密切相连,简洁地表示一些特定的名称、场所或标志,而且在数学王国中也有着广泛的应用。今天,我们就一起来研究“用字母表示数”。(板书课题)

二、探索交流,解决问题

1、学习例1

(1)彤彤11岁对吗?老师比刚才这位同学大30岁。(幻灯片)现在你知道老师几岁吗?怎么算的?

(2)当彤彤1岁时,2岁,6岁,18岁时老师多大?怎样才能用一个概括的式子简明地把你们的年龄,和任何一年老师的年龄都表示出来呢?

(3)你怎么想,就怎么写。自己开动脑筋。学生思考交流师:当a是一个具体岁数时,a+30表示什么?

(4)比较:用含有字母的式子表示老师的年龄,不仅简单明了,而且具有一般性。a+30随着a的变化而变化,它们之间是一一对应的。

(5)字母的取值范围:师:根据你的经验,可以是哪些数?

(6)代入求值当彤彤11岁时,老师的年龄是多岁?

(7)小结例1:

2、自学例2

(1)课件:航天知识

(2)看书例2,思考问题,自主学习。

(3)课件:

自学提示:

1、说说省略乘号的习惯写法。幻灯片

2、6x表示什么?

3、图中小朋友在月球上能举起的质量?

4、例1中a与例2中x,表示的`数有什么共同点和不同点?

(4)课件:为什么人到月球上举重是地面的6倍。

(5)、汇报:

(6)、小结:用字母表示数6x,a+30非常简洁概括,有一般性,含字母的式子即表示一种数量关系,也表示一个量,取值范围由实际情况所决定。这就是代数学。

(7)课件,韦达简介

三、快乐儿歌,新知延续

1、数青蛙歌曲填空,说出数量关系,拍手齐说。

2、趣味练习,巩固知识课件:练习判断,填空

3、拓展知识:感知用字母表示计量单位(自学提高)

4、作业设计:

课下同学们可以搜集一些生活中和学习中的字母。

四、谈收获,全课总结

师:通过这节课的学习,你都学到了什么呢?用字母可以表示数,含有字母的式子也可以表示数量间的关系。

简明概括,便于应用。你喜欢用字母表示数吗?(喜欢)如果教师对你们今天的表现打一个分——“a”你认为属于你的a应该表示多少?同学们说得真好。

字母与我们的生活和学习是密切相关的,希望同学们做一个有心之人,能够发现数学中更多的奥秘!

五年级数学教案上册人教版教案篇2

教学内容:

教科书第18页例4和做一做

教学目标:

1、会归纳总结除数是小数的小数除法的计算方法,能比较熟练地计算除数是整数的小数除法;

2、能根据乘除法之间的关系进行验算,提高计算的正确率;

3、养成良好的计算、验算习惯。

教学重点:

掌握小数除以整数的计算方法,你能正确计算

教学难点:

特殊情况的小数除以整数的算法

教学过程:

一、复习引入

1、口算

2。4÷2 4。8÷6 9。09÷9

8。24÷8 6÷5 1÷5

2、填空,并说出为什么?

(复习乘除法之间的关系,为下面学习验算做好准备)

3、列竖式计算(生板演)

(1)7。44÷4(2)7。44÷8

(3)102÷24(4)4。551÷5

四道逐渐变难

二、探究新知

1、在评价学生的计算结果中帮助学生学会归纳和总结。

师:通过刚才的解题,你能说出小数除以整数是怎么除的吗?

学情预设:学生有的会把步骤在说一遍,有的会讲出前面“被除数的整数部分不够除”和“除到被除数的小数末尾还有余数”两种特殊情况的小数除以整数的算法,教师一一给与肯定。

师:做小数除以整数还有什么要提醒大家的?

四人小组讨论并归纳

学情预设:生根据小数乘法经验说出转化乘整数除法去除;商的小数点要和被除数的小数点对齐;哪一位不够商1就商0,然后继续除。如果除到被除数的末尾仍然有余数,要添0后再除。

课件出示补充。

2、在暴露计算错误的过程中引导学生学会验算。

(1)师:为了保证我们的计算正确,怎么办?——验算

验算是一种很好的学习方法和习惯,怎样验算黑板上面的小数除法呢?

学情预设:生根据整数除法经验能说出用乘法验算除法,或估算一下,或用被除数除以商等。

师:四人小组,一人选一道进行验算,算完在组内说说你是怎么想的?

(2)门诊台

课件出示。

小结:用估算能知道计算有没有错;用乘法或再除一遍的方法能保证计算正确

三、巩固练习

1、小马虎也做了两道题,请同学们看看他做对了吗?如果不对应该怎么订正?

37。8÷6=63 7。4÷5=1。4……4

2、计算并验算

43。5÷29 18。9÷27

1。35÷15 207÷45

3、书第20页:7、8题

四、课堂小结

说说小数除以整数的计算法则,有什么要提醒大家的?

五年级数学教案上册人教版教案篇3

教学目标:

(1)结合具体情境,理解小数四则混合运算与整数四则混合运算的运算顺序相同,掌握小数四则混合运算的运算顺序,能正确计算小数四则混合运算;

(2)体会小数四则混合运算在实际生活上的应用价值,能利用小数四则混合运算的知识解决生活中的实际问题。

(3)进一步培养学生迁移、类推的数学能力,使学生养成认真计算的习惯,坚定学生学好数学的信心。

教学重点:

掌握小数四则混合运算的运算顺序,能正确计算小数四则混合运算。

教学难点:

掌握小数四则混合运算的运算顺序,使学生体会迁移、类推的数学思想,运用数学知识解决生活中的实际问题。

教学准备:

多媒本课件、练习题卡。

教法学法:

新课程标准指出:教师是学习的组织者、引导者、合作者,根据这一理念,我遵循“激”、“导”、“探”、“放”的原则,在教学中我精心设计准备题,诱导学生思考,鼓励学生概括交流,并让学生运用所学知识迁移、类推,促进学生对新知的内化和建构。

在合理选择教法的同时,我还注重了对学生思维能力、学习能力的培养,融观察、比较、讨论、交流、自主探究等学习方法为一体,让学生利用已掌握的整数四则混合运算的顺序来解决新课。教学中,突出“五让”的特色:书本让学生自学;问题让学生提出;规律让学生发现;疑难让学生研讨;评价让学生参与。以上的`“五让”,符合了新课程标准的理念,真正体现了学生是学习的主体。

教学过程:

一、创设情境,揭示课题(大约10分钟)

1、谈话引入。

2、出示情景图。

让学生明确题中的数学信息,让学生自己提出问题:用20元买3本笔记本和1支钢笔,还剩多少元?让学生独立计算,并说出解题的思路。

3、回顾整数四则混合运算的运算顺序。

只有加减法或只有乘除法的运算,应从左往右依次计算;如果既有加减法又有乘除法,要先算乘除法,再算加减法。在有括号的算式里,要先算小括号里面的,再算中括号里面的。

4、揭示课题。

在实际生活中,文具的单价不仅仅是整数,还有很多小数的情况。 小明今天运气就非常的好,赶上了文具店庆周年降价促销的活动,价格由整数变成了小数。

由此引入今天的课题:小数四则混合运算。(板书课题)

二、组织活动,探索新知。(大约16分钟)

1、自主探索,尝试练习

使学生明白:虽然,文具的单价发生了变化,但是解题思路没有变,让学生独立列式计算。如果用分步计算的要鼓励学生根据解题思路再列出它的综合算式。

教学中,要引导学生明白综合算式的运算顺序与解题思路的一致性,括号在综合算式中所起的重要作用。对一次性用综合算式解答的同学要加以及时的表扬。

2、交流讨论,归纳总结

引导学生观察、比较这四个算式,通过小组交流、讨论得出:小数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同。

设计意图:在这两个环节的教学中,我让学生先解决整数作条件的问题,再解决小数作条件的问题,然后再引导学生对所列出的整数算式和小数算式进行观察比较从而让学生深刻地体会到小数四则混合运算的顺序与整数四则混合运算的顺序相同,较好地突破了本节课的重点和难点。

三、实践运用,巩固新知。(大约10分钟)

为了让学生能够更好的掌握小数四则混合运算的运算顺序,正确地进行计算,我设计了四道闯关练习题。

第一关、我会算。

368+32×5-88 15×(107-35+18)

30× [480÷(24-8)] 530+12×25 ÷60

通过练习,巩固了学生对新知识的掌握,培养学生正确计算的能力。

第二关、我会解决。

让学生体会小数四则混合运算在实际生活中的广泛应用,培养学生运用数学知识解决简单实际问题的能力。

四、全课小结,交流评价。(大约4分钟)

课堂总结是对本节课所学知识进行归纳总结,以及对学生学习情况的评价,也是对学生情感、态度进行评价。

五年级数学教案上册人教版教案篇4

教学内容

质数和合数

教材第14页的内容及练习四第1~3题。

教学目标

1.理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类。

2.通过自主探究、合作交流的方法,理解质数和合数的意义,经历概念的形成过程。

3.培养学生自主探索、独立思考、合作交流的能力,充分展示数学的魅力。

重点难点

重点:初步学会准确判断一个数是质数还是合数。

难点:区分奇数、质数、偶数、合数。

教具学具

投影仪。

教学过程

一、创设情境,激趣导入

师:“六一”快到了,老师给大家送来了礼物!(出示百宝箱)大家想要吗?可是这上面有锁,而且是一个密码锁,打不开,怎么办?

师:密码是一个三位数,它既是一个偶数,又是5的倍数;最高位上的数是9的最大因数;十位上的数是最小的质数。你能打开密码锁吗?

学生质疑:什么是质数。教师引入本节课内容,板书:质数和合数。

二、探究体验,经历过程

1.认识质数与合数。

师:找因数--找出1到20的各个数的因数,看一看它们的因数的个数有什么特点?

学生分组进行,找出之后进行分类。

生:老师,我发现这些数的因数有的只有1个,有的有2个,有的有3个,还有的有4个或更多。

师:很好,我们可以把它们分类,大家把分类结果填在表中。

投影展示学生的分类结果。

?设计意图:在学生独立思考的基础上,找出1~20的因数后总结出特点,为下文概念的出示做准备,使学生亲身经历概念的形成过程,印象深刻】

师:一个数,如果只有1和它本身两个因数,这样的数叫做质数。如2、3、5、7都是质数。一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。1既不是质数也不是合数。

师:再举出几个质数和合数的例子,举得完吗?说明了什么?(质数和合数都有无数个)

想一想:最小的质数(合数)是几?最大的呢?

师:所以按照因数个数的多少,自然数又可以分为哪几类呢?

课件出示:可以把非0自然数分为质数和合数以及1,共三类。

2.制作质数表。

投影出示例1。

师:怎样找出100以内的质数呢?

生1:可以把每个数都验证一下,看哪些是质数。

生2:先把2的倍数划去,但2除外,划掉的这些数都不是质数。然后划掉3的倍数,但3不划掉……

?设计意图:通过教师的引导,学生自主建构知识,完成100以内的质数表,使学生形成一个知识网络,进一步培养了学生的数感】

三、课末总结,梳理提升

这节课我们学习了质数和合数的概念,知道了1既不是质数也不是合数。在利用所学知识进行判断时,我们要抓住质数与合数的本质特点,从因数的个数入手进行判断。在对整数进行分类时,要明确分类标准,不能把质数和合数与奇数和偶数混淆。

板书设计

教学反思

1.学生是数学学习的主人,是数学课堂上主动求知、主动探索的主体。教师是数学学习的组织者、引导者和合作者。课堂上,我尽一切所能为学生创设可观察、可探索、可发现的问题情境,让学生以科学探究的方法学习数学,促进每一位学生的发展。

2.学生是知识建构过程的主体。自主探究要让学生根据自己的生活经验或已有的知识背景去探索知识,从某种意义上说,自主探究的目的不单纯在于数学知识的掌握,而在于数学方法的掌握和情感体验的获得,通过自己探索获得“再创造”的体验。

五年级数学教案上册人教版教案篇5

一、教材内容:

人教版小学数学五年级下册44页

二、学情分析

五年级学生已经有了一定的空间想象力、独立思考能力和小组合作交流的能力,学生的动手能力较强,喜欢自己通过动手、动脑去大胆探索问题,可以在活动中发现问题,总结规律。所以在学生已经认识了长方体和正方体的特征后,安排“探索图形”这个综合与实践活动,让学生通过观察实物,小组合作探究大正方体中各种涂色问题,并总结出规律,进一步培养学生的空间想象力和概括推理能力。

三、教学目标

1、借助正方体涂色问题,通过实际操作、演示、想象等活动发现小正方体涂色情况的位置特征和规律。

2、在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法、及分类、归纳、推理、模型等数学思想和经验。

3、在解决问题的过程中,感受数学的有趣,激发主动探索、勇于实践的精神和实事求是的科学态度。

教学重点:借助正方体涂色问题,通过实际操作、演示、想象等活动发现小正方体涂色情况的位置特征和规律。

教学难点:在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法、及分类、归纳、推理、模型等数学思想和经验。

四、教学准备

魔方、正方体教具(教师)、正方体教具(学生)、学生小组探究卡

五、教学过程

一、复习引入

(一)、同学们玩过魔方吗?它是一个什么几何形体?(正方体),正方体有什么特征呢?

学生:有8个顶点、12条长度相等的棱、6个大小相等的面。

教师随机板书正方体的特征。

?设计意图:通过学生熟悉的魔方引入正方体,不仅复习了正方体的特征,为新课的学习做好良好铺垫,也使学生感受到数学来源于生活。】

(二)、出示①②③组图,它们分别是由多少块小正方体组成的吗?

生:图①2×2×2=8(块)

图②3×3×3=27(块)

图③4×4×4=64(块)

师:在它们的表面涂上颜色,那么这些小正方体都会被涂上颜色吗?

生:不是,有的会被涂上颜色,有的不会被涂上颜色。

师:涂色的面数有几种情况?

学生观察分类:3面涂色、两面涂色、一面涂色、没有涂色。

教师随机板书:3面两面一面没有涂色

师:今天我们就一起来探究正方体表面涂色的问题——探究图形

教师板书课题。

二、探究新知

(一)探究三面涂色的问题

师:三面涂色的小正方体分别有多少块呢?

生观察回答:图①有8块、图②有8块、图③有8块。

师:怎么都是8块?分别在哪里?

生:都在大正方体的8个顶点上。

师:那么棱长上有5个、6个或7个小正方体的图形呢?三面涂色的小正方体有多少块?

生:也是8块。

师:这跟什么有关系?

生:跟正方体的顶点有关系,因为有8个顶点,顶点上的小正方体是三面涂色的。

教师随机板书:顶点

(二)探究两面涂色的问题

师:两面涂色的小正方体分别又有多少块呢?是否也存在一定的规律呢?请同学们利用学具四人小组进行探究。

小组合作提示:

1、四人合作,利用学具探究两面涂色的小正方体有多少块?

2、试着将发现的结果用列式的方法表示在小组探究卡的表格中

小组探究

小组汇报

生:一面有4块,6面一共有12块。

师:你是怎么知道的?为什么除以2呢?如果是正方体块数非常多的话,用这种方法还方便吗?还有其他的方法吗?

生:一条棱上去掉三面涂色的2块剩下的一块就是两面涂色的,而正方体有12条棱,一共就有1×12=12块.

师:③号图形两面涂色的有多少块呢?你发现两面涂色的小正方体在哪里?

生:在棱上。一条棱上去掉三面涂色的2块剩下的两块就是两面涂色的,而正方体有12条棱,一共就有2×12=24块.

师:那棱长是5块、6块的呢?怎样列式计算?

生:(5-2)×12=36块(6-2)×12=48块

师:用字母n表示棱长上的小正方体的块数,怎样表示出两面涂色的小正方体块数?

生:(n-2)×12

师板书:在棱上(n-2)×12

(三)探究一面涂色的问题

师:一面涂色的小正方体有多少块呢?试着借助刚才的经验进行探究并填表。

小组合作探究

小组汇报(使用希沃软件同屏互传,让孩子边展示列式边解释方法)

生:②号图形一面涂色的小正方体在每个面上,一面有1个一面涂色的,6个面一共就有6块。③号一面有4个一面涂色的,6个面一共就有24块。

师:你是怎么知道一面有1块、4块一面涂色的呢?

生:数的

师:如果正方体的块数非常多的时候呢?你觉得这种方法怎么样?

生:有局限性

师:是的,不具有一般化,并且还需要一定的计算前提。那还有什么更好的办法吗?

生:②号图形一条棱上去掉三面涂色的剩下的一块是一面涂色的这个正方形的棱长数,而这个小正方形的棱长数是(3-2)得到的,6个面就有(3-2)×(3-2)×6=6块。

生:③号图形一条棱上去掉三面涂色的剩下的两块是一面涂色的这个正方形的棱长数,而这个小正方形的棱长数是(4-2)得到的,6个面就有(4-2)×(4-2)×6=24块。

师:看来你们发现了一定的规律,棱长是5块、6块的图形呢怎么计算一面涂色的小正方体块数?

生:(5-2)×(5-2)×6=54块

(6-2)×(6-2)×6=96块

师:用字母怎么表示?

生:(n-2)×(n-2)×6=(n-2)2×6

(四)探究没有涂色的问题

师:没有涂色的小正方体有多少块呢?怎么计算?

生:可以用小正方体的总块数减去三面涂色、两面涂色以及一面涂色的。

师:这也确实是个办法。如果我只想知道没有涂色的块数是不是还需要算出其他的情况呢?是不是有些麻烦?没有涂色的小正方体在哪里呢?

生:在里面

师:有什么办法知道呢?

生:拆开看一看

师用教具给学生演示拆开的过程,观察里面没有涂色的小正方体块数

师:现在你知道有多少块没有涂色了吗?

生:②号图形有一块没有涂色

③号图形有8块没有涂色的

师:可以用算式计算出来吗?结合刚才拆的过程我们再看一看动画演示过程看看你能不能用列式的方法计算出没有涂色的块数。

组织学生观看动画过程。

生:②号图形每条棱上有3块,去掉两块三面涂色的剩下的一块就是中间正方体的棱长数,因此中间没有涂色的小正方体块数(3-2)×(3-2)×(3-2)=1块。

生:③号图形每条棱上有4块,去掉两块三面涂色的.剩下的两块就是中间正方体的棱长数,因此中间没有涂色的小正方体块数(4-2)×(4-2)×(4-2)=8块。

师:真棒!你能试试棱长是5、6块的吗?

生:(5-2)×(5-2)×(5-2)=27块

(6-2)×(6-2)×(6-2)=64块

师:用字母怎么表示?

生:(n-2)×(n-2)×(n-2)=(n-2)3

三、知识应用

出示棱长由1000块小正方体拼成的大正方体,请问三面、两面、一面、没有涂色的小正方体分别有多少块?

学生计算汇报

四、课堂小结

通过这节课的探究,你能说说你用什么方法学会了本节课的知识?

五、版书设计

探索图形

顶点上棱上面上中心

正方体的特征:8个顶点12条棱6个面

三面两面一面没有涂色

8(n-2)×12(n-2)2×6(n-2)3

五年级数学教案上册人教版教案5篇相关文章:

人教版三年级下册语文教案5篇

人教版五年级下册教学计划5篇

人教版小学四年级数学下册教案及反思5篇

人教版六年级桥教案参考5篇

人教版四年级语文教案优质5篇

人教版四年级音乐教案5篇

人教版七年级上册语文教学计划8篇

二年级人教版语文教学计划上册8篇

人教版小学一年级数学教案7篇

人教版八年级上册英语工作总结6篇

五年级数学教案上册人教版教案5篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
156703